Research

Publications

  1. M. V. Klibanov and T. Truong, Monitoring of epidemics via solution of a coefficient inverse problem, 2024 (submitted)
  2. J. Daugherty, N. Kaduk, E. Morgan, D.-L. Nguyen, P. Snidanko and T. Truong, On fast reconstruction of periodic structures with partial scattering data, Electronic Research Archive, 2024 (accepted).
  3. D.-L. Nguyen and T. Truong, A stable imaging functional for anisotropic periodic media in electromagnetic inverse scattering, SIAM Journal on Applied Mathematics, 84:4, 1631-1657, 2024.
  4. D.-L. Nguyen and T. Truong, On the Numerical Solution to an Inverse Medium Scattering Problem, Acta Mathematica Vietnamica, 48, 551 – 566, 2023.
  5. D.-L. Nguyen, K. Stahl and T. Truong, A new sampling indicator function for stable imaging of periodic scattering media, Inverse Problems, 39, 065013, 2023.
  6. T. Le, D.-L. Nguyen, V. Nguyen and T. Truong, Sampling type method combined with deep learning for inverse scattering with one incident waveAMS Contemporary Mathematics, 784, 63-80, 2023.
  7. D.-L. Nguyen and T. Truong, Fast numerical solutions to direct and inverse scattering for bi-anisotropic periodic Maxwell’s equationsAMS Contemporary Mathematics, 784, 81-101, 2023.
  8. D.-L. Nguyen, L. H. Nguyen and T. Truong, The Carleman-based contraction principle to reconstruct the potential of nonlinear hyperbolic equationsComputers and Mathematics with Applications, 128, 239-248, 2022.
  9. D.-L. Nguyen and T. Truong, Imaging of bi-anisotropic periodic structures from electromagnetic near field dataJournal of Inverse and Ill-posed Problems, 30, 305-319, 2022.
  10. I. Harris, D.-L. Nguyen, J. Sands and T. Truong, On the inverse scattering from anisotropic periodic layers and transmission eigenvaluesApplicable Analysis, 101:8, 3065-3081, 2022
  11. T. Le, D.-L. Nguyen, H. Schmidt and T. Truong, Imaging of 3D objects with experimental data using orthogonality sampling methodsInverse Problems38, 025007, 2021.
  12. T. Truong, D.-L. Nguyen and M.V. Klibanov, Convexication numerical algorithm for a 2D inverse scattering problem with backscatter dataInverse Problems in Science and Engineering, 29, 2656-2675, 2021.