Chapter 4

Before reading this chapter, read Appendix | (p. 417). lerevimatrix math.

4.1 Prefactory Comments about Matrices and Vectors

We’ll begin with a brief review of matrix math hergwaell. A matrixis a regular array of
numbers written within a set of square brackets. Medrare equal if they are identical.

Matrices can be added only if they have equal numbewsas and columns.

a1 a2 &3 N [bll by> blS] _ C11 G2 Cg3 wherec; =g + by
Ap1 Ao A3 D1 b2 o3 Co1 Cp2 Co3

Multiplying a matrix by a scalar (a non-matrix componasglso straightforward.

A1 &1 Q13| | X811 X812 X3
Ay App A3 Xay1 Xlpp Xaog

Multiplying two matrices is less obvious. One ciioah required for matrix multiplication is

that the number of columns in the first matrix megtial the number of rows on the second.

by, b
a1 a2 a13] e Icll Clzl

x| by b
ap1 8o Ax3 21722 Co1 Cp2
b3y b3y
where ;3 =a3901 + a0, + 1305 Co1 = 111 + Ay +ay3hs;
Cip = ag3byo + o) + g 3hs) Cop = 1015 + Ay, + Aydhs)

or more generallyc; = Zayby

Read “A Special Case of Matrix Multiplication” (68) on your own. We’'ll make use of block
matrices later in the chapter.

Characters of Conjugate Matrices

The charactery, of a matrix is equal to the sum of its diagoraheents.x = Zaﬂ f
J



there are 4 matrices, 3, ¢, ando, then ifas = ¢ andsa = o, thenx. = Xq. Note this matrix
multiplication can only occur for square matric€onjugate matrices have identical characters

and are related by 1z4 = ¢, wheres andc are conjugate and

100 ..0
4. _ . _1010..0
ata=r= s
000.. 1

Matrix Notation for Geometric Transformations

X
A point in space or a vector is given by the 3xarm%32/ . This means that any 3
dimensional transformation (i.e. one of the symgnefrerations) must be a 3x3 matrix, so that

the two may be multiplied. We’ll begin with therglest, the identity transformatiol,

N <

Thus, we see that the 3x3 matrix with all oneshendiagonal and zeros elsewhere does not
change any value on the vector.

From here on out, it is easiest (at least to meptwider an operation that you can see in
your mind’s eye. Constructing the transforming nmas then less difficult. Inversion is also
not difficult, recall that it moves a point (x, 3) to (-, -y, -z). If theE matrix changes nothing,

then a matrix with all -1's on the diagonal affetttis change so ...

-1 0 O0|Xx - X
0 -1 0 |y|=-y
0O 0 -1z -Z

[NB: I'll continue to use the traditional “-” sigto indicate negatives, rather than the “bar”

symbolism the book uses.] When one uses a reffeplane some, all, or no items may move,



depending on whether or not they lie in the plamgen consideration. Let’'s considerxaplane
placed on a set of Cartesian coordinate axeglieénormal’ way). In this case, any point on
thex orz axes will not change position, but one onyfais, will move to . The matrix that

will accomplish this is:

1 0 0Ofx X
0 -1 0O||ly|=|-Y
0O 0 1|z Z

Thexy andyz planes are similarly constructed. See the bookédtails. It should be noted that

not all planes will lie along these axes (e.g.dlames in &4, molecule); nonetheless this gives

you a feel for how the transformative matricesré&flection planes are constructed. Still, the
large majority of point groups have planes thatpaempendicular, so the planes may be aligned
along a set of Cartesian axes.

Initially, proper rotation axes seem to presentosencthallenging situation, but there is a

generally applicable simplification. While thene & range o€, axes possible, except for the
high symmetry groups, all other axes either lisglthe principal axis or a®, and lie

perpendicular to it. Thus, we begin by alwaysrahg the principal axis along the Cartesman

axis. In this case, coordinates do not change. Thandy coordinates then change as follows:

cosp sing 0] x Xcosp+ ysing

-sing cosp 0|y |=|—-xsihng+ ycoswp
0 0 1|z 1

We can use the-axis for an example of a perpendicularrotational matrix, in this case:

1 0 0
C,(x)=|0 -1 0
00 -1



Recall that an improper rotation,, $ given byC,a,, = 6,,C,, or in matrix notation:

cogp sing 01 0O O cosp sing O
-sing cosp 00 1 O |=|-sing coywy O
0 0O 10 0 -1 0 0o -1

This also demonstrates how 2 symmetry operatiomsaried out mathematically: the matrices
are multiplied.

All of the previous matrices are orthogonal. Fritis observation, their inverses may be
generated by transposing the rows and columnsroiwel - column 1 and column 1L row 1,

etc. For example:

a b 4 _la c
4= - 4 =
c d b d

A real example is shown on pp. 73-74. The book theks at theC; axes of a tetrahedron.

Vectors and Their Scalar Products

The scalar (or dot) product of 2 vectors can bemyivy either of 2 methods:
For the vectoré& andB:
A<B = A'B'cod = whereA', B' = lengths of vectors, c6s- angle between them

or A-B =AB, + AB, whereA,, A, B,, B, are the coordinates of the vectors in two space.

4.2 Representations of Groups

It was noted earlier that all point groups are@tbgroups. We begin this section by
demonstrating that this is true by working an exempVe’ll go with the book example because
it works nicely. Start by creating, the outlineen filling in the first row & column of the matrix
because that multiplication is unambiguous. Tlagalnals are alts because each operation is

followed by itself and regenerates the originalipms. The others result from performing the



sequence of operations described. Show the fallp@MT is correct using a set of models.

Cy| E C, oy 0 Cy| E C oy 0y Cy| E C, oy 0y
E E| E C o, o E| E C o, o
C2 —> G| G —_— G| G E o/ oy
O-V ' ()-VI OV' ()-VI OV' OV C 2 E

You can see the group is indeed closed. The savtie ¢an be developed using matrix

multiplication. The book works,C, =g,/ on p. 780,00,/ appears below.

1 0 0(-1 00| |-1 0O
0 -1 040 1 O0|=/0 -1 OfwhichisC,.
O 0 1/ 0 0 1 0O 0 1

A representation of a group a collection of matrices that can be combimed manner

corresponding to the combination of real physigadrations in a molecule. Each matrix
corresponds to one of the physical operations.

The 4 matrices shown in the middle of p. 78dgy make up a representation.

There are 4 representations in the middle of gth®table with all 1's & -1's. We will see
how those numbers were chosen shortly, but thesthar4 simplest representations possible for
C,,. The purpose of this exercise is to show thgbasmove from a theoretical minimum to a
molecule as a whole, then to individual parts,.(eagnds, atoms) the number of factors you will
have to consider expands.

The following properties we will discuss represegrty important practical considerations.

Assume that a set of matrices,a, 3, ¢, ... form a representation of a group. Making the
same similarity transformation on each matrix yseddnew set of matrices.

Q-lEQ ——

Qtag=a'



On p. 80 the books provides a proof of the folloyviih 23 = », thena's’ = »'. What this
means is that for each matrix in the original kete will be one in the new set that behaves
similarly. Thus, the sets are said to run in alp@rfashion. If this is true, the second set of

matrices must be second representation of the group
Now assume whean is transformed inter’ by q, it is found thata’ is a block factored

matrix.

eg. 4= A2

s

A3

This happens with some frequency. If this pattefound for all matrices in the set,
a', 8" ..., then

418, =0

a5/ By) =Dy

A result is that each matrix will be subdividedoirat series of smaller matrices.

%1, 41, B2, Cqs ...

5, A, By, €9 ...

Following the parallel matrices argument each eséhsets of matrices are representations
of a group. If a set of matrices 4, 3, ¢, ... can be transformed as just described into afset o
blocked matricest’, a', 8', ¢’ they form a reducible representation. If notythee an

irreducible representation




4.3 The Great Orthogonality Theorem

Nomenclature

h = order of a group

¢, = the dimension ith representation, in our casewill be the value oE for any irreducible

representation
R = operations in the group

I (R)mn = element in row m, column n of the ith irreducibdpresentation

* = conjugate (takes into account complex numbers).

Theorem: >[I (R) [T (R) ]| = % 3, O O
R iy

i
This equation simply states that for an irreducrieleresentation made up of matrices, one set of
elements from each matrix will yield a set of nolized, mutually orthogonal vectors in h-space.

Five Important Rules

The Great Orthogonality Theorem leads to the falhgwules. We’ll use&,,, as an example
to illustrate the rules. Recall thgtis the character of a group and in this casecistiefficient

preceding the operations on the top line of theaittar table.

Cs| E 2C3 30,

A, 1 1
/ Al 1\ 1 -1
/ El2N\1 0O

r/ \/zdimension of”

1. > ¢?=h For the previous example=1+2+3=6and (/! =12+ 12+ 2 =6.

2. Z[XI (R)]2 =h. For the 3 irreducible representation<Cg¥, we see
R



2RI = 1ap + 217 + 317 = 6

;[/\(i (R = 112 + 2(1P + 3(-1¢ = 6

2In(RF =12 + 2(-1F + 30F = 6
3. ; X (R)x;(R)= 0 wheni #j. Again, forCs,;

Z=1(1)(1) +2(1)(1) +3(1)(-1) =0
> =1(1)(2) +2(1)(-1) + 3(1)(0)=0
> =1(1)(2) + 2(1)(-1) + 3(-1)(0) =0
This shows that each irreducible representasiarthogonal to the others. As we shall
soon see, a very similar calculation involving meducible representation and a reducible
one, will yield a non-zero total.

4. In a given representation (reducible or irredl®)i the characters of all matrices belonging
to operations in the same class are identical. hsve seen this above and it allows the
multiplication we’ve done.

5. The number of irreducible representations afoag is equal to the number of classes in a

group. FoICy, there are 3 classes and 3 irreducible represensati

An important practical relationship

On pages 87-88 the book derives a key relatiortslaitl’ll just give you.
1
3= 2 XRX®R)
R

Where a= the number of times the block constituting tieirreducible representation will

appear when the reducible representation is comipletduced by the necessary



similarity transformation.

The best way to understand this equation is totsesed. Let’s go over the book example

on pp 88-89.

Ca| E 2C; 30,

A1l 1 1 _

Al 1 1 -1 h=6 (i.e. 1E + €3+ 30,)
El2 -1 0.

M 5 2 -1

In the following arithmetic, first of the 3 numberailtiplied is the character for the class, the

second comes from the irreducible representatian £¢), and the third from the reducible

representation(y).
A= @ (D) + RDE) + G- {%} (5+4-3)=1
A= @ (DAW)E) + 1)) + @)1)(1)] {%} (5+4+3)=2

E = @ (DR)E) + QD) + GO)-D)] {%j (10-4+0)=1

Thus,I";is composed of 1 A2 A, and 1 E irreducible representations. On pagen&9

book shows that if these 4 irreducible represeotatre added the original reducible

representation is obtained as you would expect.

4.4 Character Tables

A detailed description of the character tablggr@ssided in this section. Some of this is
interesting, but not required. You are not reguimemorize material from this section that does

not appear in the notes.

The horizontal lines are the irreducible represgna of the group. One dimensional



representations are “A” or “B,” 2 dimensional reggatations are “E,” and 3 dimensional
representations are “T.” “A” representations gnaetric with respect to rotation about the
principle rotation axis while “B” representation® antisymmetric.

Every table will have a section with the symbolsyxz, R, R, and B. x,y,and z

Represent Cartesian coordinates, while the “R” saslenote clockwise rotation about the x, v,
and z axes, respectively. Later, we’ll see thg xnd z terms represent movement (translation)
in the indicated direction. The book also shows kiwe irreducible representations are
generated from matrices. Even though you wontelseed on this, it is a nice exercise to see
how each term in an irreducible representatiorersegated.

The fourth area is not important now, but will bewoso later on. Until then, you can
ignore this area of the character table.

The Character Table fd,

This is an exercise in constructing a charactdetmbm scratch. We begin by determining
thatD, contains the following operationg, Cs4, C2, C, Cy(X), Ca(y), Ca(xy), C2(XY)
These can be collected &5:2C; Cy(2), 22,, 2C,'. We saw earlier that the number of classes (in
this case 5) must equal the number of irreducigteasentations, so there are 5 of these.
Applying the first of the “5 important rules” (p), ive see that:
Y/?=h=8=(1f + (1Y + (17 + (1Y + (2¢ = 8. This result is the only one possible. Tiis,
has 4 “A” or “B” irreducible representations andedit.” These are the integers for the
column. Also there will always be a totally symnetepresentation (all 1s). See the figure in
the middle of p. 93.
Applying the second rule, we see that for the ameedsional irreducible representations,

all of the characters must be 1 or -1.

10



> =1(1)(1) + 2(1)(1) + 1(1)(1) + 2(1)(-1) + 2(L)}-E O
As you can see, the result will be zero if, and/dafyithe character fo andC,(z) are both 1. In
this situation, then if 2 of the operatiors,22C,, and Z,' have -1 characters, the summation

equals zero. There are 3 combinations of 1’s atgithat work here and they represent the
remaining 3 one-dimensional irreducible represémat | leave it to you to read how the two-

dimensional representation is generated.

4.5 Representations for Cyclic Groups;

You may skip this section.
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